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The paper is concerned with the flow of a dilute suspension of monosized 
spheroids past a sphere placed at the centerline of a cylindrical tube. The 
suspension is modeled by the transversely isotropic fluid model and the numeri- 
cal solution is obtained by a time-dependent boundary element method. No 
steady-state solution to the problem was found. However, the amplitude of the 
long-time oscillations in the drag force on the sphere is only about I% of its 
mean value at a solid volume concentration of 0.01 and an aspect ratio of 10 
for the spheroids. The initial orientation of the microstructure has a small effect 
on the drag forcc: it can give rise to a +_ 1% variation in the drag force at large 
time. 

KEY WORDS: Falling ball; suspension c~f fibers; boundary element method: 
Ericksen method. 

1. I N T R O D U C T I O N  

The flow of a fluid past  a sphere has received a great  deal  of a t ten t ion  in 
the past. Much of this interest has been generated from the possibi l i ty  of 
measur ing  the effective viscosity by observing the fall of precision spheres 

th rough  the fluid of interest.  The a p p a r a t u s  required is relat ively s imple to 
cons t ruc t  and  the under ly ing theory  for Newton ian  fluids is well under-  
s tood.  When  the fluid is non -Newton i an  the p rob lem is cons iderab ly  more  
complex  and  the final analysis  depends  on the par t icu la r  fluid model  
adop ted .  

Much  of  the theoret ical  studies of the non -N e w ton i a n  p rob lem were 
based on pe r tu rba t ion  and var ia t iona l  methods ;  a review of  this is found 
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in Acharya etal .  t~J Such results are limited to slightly non-Newtonian 
fluids or to inelastic generalized Newtonian fluids, t2~ Numerical studies 
using finite difference, ~3"41 finite element, t5 9~ and boundary element 
methods tZ~ have also been attempted. Most recent numerical work concen- 
trated on the uniform flow of the Oldroyd-B fluid past a sphere placed on 
the centerline of a cylindrical tube; the problem was posed as one of the 
benchmark problems for different numerical techniques in the 5th 
Workshop on Numerical Methods in Non-Newtonian Flows. I ~  The quan- 
tity of interest to the experimenters is the drag coefficient ,~ defined by 

X = F/FN 

where F is the drag force on the sphere and Fu is the corresponding drag 
force for a Newtonian fluid of the same (zero shear rate) viscosity in an 
unbounded body of fluid. Overall, there is an agreement between different 
numerical methods. They predict a drag reduction with increasing Weissen- 
berg number (defined by ).U/a, where 2 is the relaxation time, a is the 
sphere radius, and U is its velocity relative to the cylindrical tubel; at a 
Weissenberg of 0.7, a drag reduction of about 25% was found. Experimen- 
tal data on a polyacrylamide in glycerine solution "~ confirmed the drag 
reduction and provided some degree of confidence in the numerical predic- 
tions. 

In a recent paper, MiUiken et aL 112J presented some falling sphere data 
for a suspension of blunt-ended cylinders and chopped nylon fibers (of 
aspect ratio ~19.8). The data strongly suggest that the falling sphere 
system can form the basis of a viscometer for these suspensions. In the 
recent Workshop in Dynamics of Concentrated Systems, Powell ~13~ pre- 
sented further data showing that the initial orientation of the fibers has a 
strong effect on the drag force on the sphere. Since the initial orientation 
of the fibers cannot be controlled to an arbitrary accuracy, it is desirable 
to know how much of the orientation effect is due to simply a change in 
the fluid viscosity, and how much is due to the nonlinear interaction 
between the fibers. 

This paper attempts to analyze the uniform flow of a model suspen- 
sion fluid past a sphere in a cylindrical tube. The numerical method used 
is the boundary element method, which has proved to be very effective in 
analyzing the same flow geometry, but with the Oldroyd-B model, la4) The 
constitutive equation adopted is the tranversely isotropic fluid (TIF) 
model. ~15~ The connection between this model and the microstructure of the 
fluid was elucidated in Batchelor, ~6J Cox and Brenner, ~v~ and Leal and 
Hinch. t~8"19) An equivalent constitutive equation was used in Lipscomb et 
al. 12~ in their study of entry flow of fiber suspensions. The computational 
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method used in ref. 20, however, was a steady-state finite element techni- 
que. The existence of a steady-state solution in the entry flow problem has 
not yet been established. 

The main conclusion drawn in this paper is that there is no steady- 
state solution to the problem. The amplitude of the oscillations in the drag 
force on the sphere is, however, no more that 1% of the mean value at long 
time observation. Furthermore, it is found that an uncertainty in the initial 
orientation of the microstructurc can result in a variation of about _+ 1% 
in the drag coefficient. The effective viscosity inferred from the drag force 
on the sphere for the case where the aspect ratio is 20 agrees well with the 
data of Milliken et al. ~m In addition, near the centerline behind the falling 
sphere and at long time (of the order 4 dimensionless time), the fibers tend 
to align themselves with the tube axis, a phenomenon that has been obser- 
ved in experiments. 

2. GOVERNING EQUATIONS 

We consider the flow generated by a sphere falling along the centerline 
of a cylindrical tube containing a model suspension fluid. The radius of 
the sphere is a, and the radius of the tube is 2a (these are the dimensions 
recommended by the Fifth Workshop in Numerical Methods in Non-New- 
tonian Flows). In a frame of reference that is translated with the sphere, the 
sphere is at rest, the tube wall is seen moving with a constant velocity (the 
falling speed U of the sphere, but in the opposite direction of the falling 
sphere). Henceforth, all length scales are normalized with respect to a and 
velocities are normalized with respect to U; the time is therefore made 
dimensionless with respect to a/U. Furthermore, the fluid far away from the 
sphere is seen moving rigidly with the tube, and all associated stresses are 
zero there. The two equations that we wish to solve are 

V .u=O and V .~=O 

subjected to the above-mentioned boundary conditions, in which u is the 
velocity field and a is the total stress field given by 

= - P I  + S 

where P is the hydrodynamic pressure, 1 is the unit tensor, and S is the 
"extra" stress. 

The simplest properly invariant theory of anisotropic fluids is the 
transversely isotropic fluid (TIF) model proposed by Ericksen/15~ In this 
model the microstructure of the fluid is characterized by a unit vector field 
p, which evolves in time according to a certain law. The stress generated by 
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the microstructure is a tensor-valued function of this unit vector field and 
the strain rate tensor. 

Jeffery 1211 considered the motion of a rigid spheroid suspended in a 
Newtonian fluid. He showed that the spheroid translated with the fluid 
velocity and rotates according to 

Dp W . p + R 2 - 1  
0--7= ~ ( D ' p -  D:ppp) (1) 

where D(.)/Dt is the material derivative, W = [ ( V u ) t - V u ] / 2  is the 
vorticity tensor, D =  [(Vu)t +Vu] /2  is the strain rate tcnsor~ the dagger 
denotes a transpose operation, R is the aspect ratio of the spheroid, and p 
is a unit vector along the major axis of the spheroid. Note that as p. p = 0, 
the magnitude of p is preserved in this time evolution. If p is initially a unit 
vector, then it remains a unit vector at all time. 

Batchelor, ~6~ Cox and Brenner, ~7~ Lcal and Hinch, I ~ ' ~  among 
others, considered a dilutc suspension of monosized rigid spheroids and 
obtained the volume-averaged stress using Jeffery's solution. They showed 
that the TIF model is the appropriate continuum description of the suspen- 
sion. In this case the unit vector field p is simply the unit vector along the 
axis of the spheroid, and the bulk stress generated by the microstructure is 
given by ~1"1 

S = 2 ~ I D + 2 r I ~ { A D : p p p p + B ( D ' p p + p p ' D ) + C D + d ; ~ F p p }  (2) 

where r/ is the viscosity of the solvent, �9 is the volume fraction, d~ is the 
rotational diffusivity of the spheroids, and A, B, C, and F are material con- 
stants depending on the aspect ratio of the microstructure. The asymptotic 
values of A, B, C, and F are tabulated in Table I. 

In this paper, we are concerned with a dilute suspension of macrosized 
fibers (large aspect ratio) so that the diffusivity can be set to zero. The 

Table I. Asymptotic Values of A, B, C, and F 
H 

Asymptotic limits A B C 

R 2 6In 2R- 11 3R 2 
R ---, ~ (rodlike) 2 

2(ln 2R- 1.5) R 2 In 2R -0.5 

R=1+6,6~1 39562 15 6 39562 5 (  2 1 ) 
(near-sphere) 14-'~ ] - 4 - 5 ~  2 1-76+.,63 

96 

lO 208 2 8 128 8 ~2 
R --, 0 (disklike) ~ + ~ - 3rtR ~ 1 97~z 3~---R - ~--R 
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size of the fibers must, however, be considerably smaller than the radius 
of the falling sphere for the suspension to be treated as a continuum. It is 
interesting to note that Milliken et aL ~2~ found that falling spheres smaller 
than the length of the fibers give the same average viscosity as much larger 
spheres. The implication of the dilute assumption for a suspension of fibers 
is that ~ R 2 ~  1. However, experimental studies by Milliken e taU ~21 
showed that the dilute regime extends to q)R2~ 50. Note that, from (1), 

R 2 - 1  
DPP= w .  p p -  pp. w + R--7~ (D.  pp + pp. D -  2D : pppp) 
Dt 

This is identical to the constitutive equation adopted by Lipscomb et al. 12~ 
for solving the 4:1 entry flow problem. As a consequence of their closure 
assumption D:  ( p p p p ~ = D  : (pp~(pp~ Etheir Eq.(24)], where the 
angular brackets denote an ensemble average, their (pp)  is equivalent to 
pp in our notation and thus the constitutive equation adopted in ref. 20, 
although written in terms of (pp~, is mathematically the same as our 
constitutive equation. 

The TIF model, represented by (1), (2), is quite successful in describ- 
ing certain qualitative features of suspensions. It predicts that both the 
shear stress and the first normal stress difference are linear in the shear rate 
-) in a simple shearing flow. In addition, the stresses are functions of ~t, 
where t is the time. These features have been observed in experiments ~-'-~ 
with suspensions of polystyrene spheres (diameter ranging from 40 to 
50 ~m) in a silicon oil. However, the stresses are periodic in time, which 
corresponds directly with the Jeffrey orbits executed by the spheroids t:zl 
and has been observed in dilute suspensions, t23~ Specifically, in a simple 
shearing flow with shear rate ~, it can be shown that p is periodic in time: 

pj = (~ cos ~.t + [I sin cot)/P 

( 2 ~ ) ' / 2 f l  c~  
P2 = p 

and 

P = (~ cos cot +/3 sin cot) 2 + _ (,6' cos cot - ~ sin cot) 2 

where ~ and fl are constants related to the initial values of p, and the 
frequency co is given by 

1 2 

which is proportional to the magnitude of the shear rate. 

822/62/5-6-19 
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The stresses are moments of p, and there is no a priori estimate of how 
fast (or how slow) they are varying in time in a complex flow. For example, 
the plot ofp~(t) pz(t) in a simple shearing flow is shown in Fig. l; note that 
it varies rapidly at certain time interval. 

The instantaneous viscosity is defined by the ratio of the shear stress 
to the shear rate; it is given by 

q~rr= q[1 + q~(B+ C+ 2Ap~(t) p~(t))] 

The leading asymptotic terms (at large aspect ratio) of the preceeding 
equation are q(1 +q~C). For a better estimate of the effective shear 
viscosity, the time average value of p~(t)pZ(t) should be used. At an aspect 
ratio of R =  10, this gives an effective viscosity of r/~n= q(1 +4.8q5), and 
when R = 20, this yields q~rf = 1'/( 1 + 6.2q~) irrespective of the initial orienta- 
tions of the fibers (the initial configurations of the fibers only affect the 
third significant figures in the coefficients of q~ when the aspect ratio is less 
than 20). The results obtained by Ganani and Powel1124~ in shear flow for 
rods having R = 2 5  yield q~n~q(1 + 10q~), which is in reasonable agree- 
ment with the predicted value of 1/(1 + 7q~) at this aspect ratio. The TIF 
constitutive theory is therefore not inconsistent with experimental data in 
simple shearing flows. 

The fact that the kinetics is periodic in time in the simple shearing flow 
suggests that there is no guarantee of having a steady-state solution in 
complex flows, at least in those that have a shear flow component in parts 
of the flow domain (the 4:1 entry flow is one such example). The numerical 

o . 4  ~ 
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Fig.  1. T h e  m o m e n t  pl(t) p2(t) in a s imple  s h e a r i n g  f low of  shea r  ra te  ~ = 1. T h e  aspect  r a t io  

of the  s p h e r o i d  is r = 10, q~ = 0.01, a n d  init ially p~ = P2 = 0 . 5 .  
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method adopted to solve the TIF model must necessarily be a time- 
dependent method; furthermore, the time integration scheme must be 
robust enough to handle fast-varying stresses. 

3. N U M E R I C A L  S I M U L A T I O N  A N D  R E S U L T S  

The numerical method adopted is the boundary element method 
(BEM), which has been described in several papers t1~ and need not be 
repeated here in detail. In essence, the method solves a series of linear 
problems, each with a known body force (the domain integrals of the extra 
non-Newtonian stresses) until convergence is achieved. The difference 
between the previous BEM (1~ and the present scheme is the constitutive 
equations chosen and the method for computing the extra stresses. Sugeng 
and Tanner (1~ employed a streamline scheme, whereas a time integration 
scheme similar to that used in ref. 25 is employed here. 

A streamline scheme can be developed here by first defining a vector 
q that evolves in time according to 

q = ~ q  (3) 

where ~ is an "effective" velocity gradient yet to be determined and the 
dot denotes the material time derivative. Let p be the unit vector along q, 
i.e., 

q 
p = - (4) 

q 

Thence 

and thus p evolves in time according to 

= ~ p  - ~ : p p p  

This is identical to ( 1 ) if the "effective" velocity gradient tensor is given 
by ~ ~  where ( = 2 / ( R 2 +  l). Along a streamline the material 
derivative is simply the arc length derivative. Thus, given the boundary 
conditions at the entry of the flow domain and the kinematics, Eq. (3) can 
be integrated along the streamline. The unit vector field p can be found 
from Eq. (4), and hence the stress tensor can be found from Eq. (2). This 
scheme was implemented in the current BEM. However, we found that it 
is not very robust, especially with a fine mesh when the kinematics have yet 
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to converge. Streamline crossing may occur in this case, leading to a 
divergence of the numerical results. 

The time integration scheme (fourth-order Runge-Kutta), which is 
based on integrating Eq. (3) using available current information, is much 
more robust and was adopted in this study. Another advantage of the time 
integration method is its ability to cope with recirculatory regions; actually 
there are none in this problem. 

We first test the numerical method for the unbounded flow of the 
Newtonian fluid past a sphere. In this case, the drag force on the sphere is 
simply 6rulUa, where r/ is the fluid viscosity, and U is the speed of the 
sphere. Here, X should be exactly one. This problem results in a set of 
integral equations of the first kind (prescribed velocities on the boundary 
of the sphere, and the boundary tractions are sought after). Integral equa- 
tions of the first kind can lead to a set of ill-posed algebraic equations upon 
discretization, t'-6'-'71 while integral equations of the second kind yield a set 
of well-conditioned algebraic equations. Table il shows the numerical 
results for different mesh sizes (all uniform). When the program runs in 
single-precision mode (32-bit arithmetics), roundoff errors become impor- 
tant if the number of boundary elements is greater than 72, and the error 
steadily worsens. However, in double-precision mode (64-bit arithmetics), 
the rate of convergence is nearly quadratic in the number of elements, up 
to 360 elements. 

Table II. Comparison of Results from 
Dif ferent  Meshes for the Unbounded Flow of the 

Newtonian Fluid Past a Sphere" 

Number of 
boundary elements Z Error (%) 

20 0.9974664 0.253 
30 0.9988667 0.113 
40 0.9993498 0.0650 
50 0.9995726 0.0427 
60 0.9996946 0.0305 
72 0.9998025 0.0197 
90 0.9998735 0.0126 

120 0.9999288 0.00712 
180 0.9999683 0.00317 
240 0.9999821 0.00179 
300 0.9999885 0.00114 
360 0.9999922 0.000786 

The exact result for X is 1, 
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We have also carried out similar numerical experiments for the flow 
past oblate and prolate spheroids. In both cases the aspect ratio of the 
polar radius to the equatorial radius varies from 0.1 to 0.5. The ill-condi- 
tioning problem does not arise in double-precision arithmetics, and in all 
cases we obtain five significant figures in accuracy when the number of- 
boundary elements is about 300. 

Next, we test the robustness of the time integration scheme in the simple 
shearing flow. Figure l shows good agreement between the boundary 
element results and the exact results. The slight disagreement in the region 
of t = 30 is due to our large chosen time step (3t = 0.05). With smaller time 
steps, the agreement between the numerical results and the exact solution 
improves at the expense of computing time. 

We consider now the flow past a sphere placed at the center of a tube. 
This problem does not result in a set of integral equations of the first kind, 
and we can expect the problem to be well-behaved numerically. Different 
meshes with varying degrees of coarseness used in the study are listed in 
Table Ill and shown in Figs. 2a-2c; only the results from the finest mesh 
are reported here. The half-length of the cylinder is chosen to be 6a and the 
ratio of sphere-to-cylinder radius is 0.5. This cylinder half-length is chosen 
based on the kinematics obtained for the Newtonian and the Oldroyd-B 
fluids/j4J It will be seen that a half-length of 6a is also adequate for the 
suspensions. 

The boundary conditions are: 

I. At the entry of the flow domain ( z =  - 6 a )  plug flow conditions 
are applied, where the axial velocity u =  U, the radial velocity 
v = 0 .  

2. Along the tube wall ( r = a ) ,  u =  U and v=0 .  

3. Along the centerline (r = 0), symmetry boundary conditions apply, 
where v = 0 and the axial traction t~ = at: = 0. 

4. On the surface of the sphere, u = 0 = v. 

Table Ill. Summary  of the Boundary Element Meshes Used 
for the Calculations 

Smallest boundary 
Name Boundary elemcnls Domain cells element length 

M I 52 240 0.262a 
M2 96 640 0.157a 
M3 132 1456 0.105a 
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(a) 1 
i / x / \ / ~  1 
t_.. .-~ v v ~ ",,b'~ ",(-)/7" ~ i ~ .  / ~  I 

(b) 

(c) 1 

Fig. 2. Meshes for the calculations. (a) M1, (b) M2, !c) M3. 

. At the outlet of the flow domain (z = 6a), the axial traction is set 
to zero (no net force action on the fluid), and the radial velocity 
v---0. 

In addition, all stress components are set to zero and p is set to a known 
vector initially. 

When the wall effects are considered, the Stokes drag for the New- 
tonian fluid can be estimated from the value of unbounded case using the 
Bohlin formula (28) (R is the tube radius here): 

Z = [1 - 2 . 1 0 4 4 4 ( a / R )  + 2 . 0 8 8 7 7 ( a / R )  s - 0.94813(a/R) 5 

- 1 . 3 7 2 ( a / R )  6 + 3 . 8 7 ( a / R )  8 - 4 . 1 9 ( a / R ) l O ]  - (51 

For the geometry under consideration Eq. (5) predicts Z=5.923. (The 
theory of Haberman  (2s) predicts the value to be 5.970. Recent careful finite 
element (9) and boundary element (14) studies show this value to be 5.943.) 
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Fig. 3. The moment  p~(t) p2(t) as a function o_f time at different locations on the surface of 
the sphere. R = 10, q~ =0.01. Initially, the spheroids are aligned at an angle of 0 = 4 5  '~ to the 
tube axis. 

Our numerical results give Z = 5.777, 5.900, and 5.919 from mesh M1, M2, 
and M3, respectively, for the Newtonian case. 

For the TIF model, which is the primary focus of this paper, we find 
that the kinetics is periodic in time. Figure 3 shows the moment p~(t) p2(t) 
at different locations on the surface of the sphere as a function of time for 

"59 1 The~ - 0 Beg 

! , ;Y-- ,  , ,  , 

X 6 . 3 1 ~ / ~ ~ ~  ~ ~  ...... ,,, ,. ',.- . t~.-.~.,7 ' , 

T~,~e 

Fig. 4. The drag force {normalized with respect to 6nrlUa) on the sphere as a function of 
time for three differenl initial configurations of the spheroids, 0 = 0 ~ (parallel to the tube axis), 
0 = 4 5 "  {this corresponds to a random distribution of the spheroids), and 0 = 9 0  ~ (per- 
pendicular to the tube axis). The aspect ratio of the spheroids is R = 10, and the volume frac- 
tion is r = 0.01. The king-time average (t > 4) value of g is 6.26 and its s tandard deviation is 
about 1%. This is translated into an effective viscosity of 1.058q for the suspension. 
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a spheroid aspect ratio of 10. At point A, the front stagnation point on thc 
sphere surface, the local shear rate is zero, and p~(t)p2(t) is seen to bc 
independent of time. The local shear rate is highest at point C on the 
sphere surface; the curve p~(t) p2(t) also has the highest frequency at this 
location. This corresponds to the results obtained in a simple shearing flow: 
the kinetics is periodic in time with a fundamental frequency that is propor- 
tional to the magnitude of the shear rate. 

The traction on the surface of the sphere is also a periodic function of 
time, with a frequency that depends on the local shear rate. The drag force 
on the sphere is the area integral of the traction, and it should contain a 
spectrum of frequencies. Figure 4 shows this clearly for three different 
initial configurations of the spheroids, from 0 = 0" (aligned with the tube 
axis) to 0 = 9 0  ~ (perpendicular to the tube axis). The case of 0=45"  
corresponds to a random distribution of the spheroids (on the average). At 
first sight, these curves appear random in time. However, upon Fourier 
transforming of the curves, we find that there is one dominant frequency at 
rt/2 (note that the frequency is normalized with respect to U/a). Other 
frequencies contribute about equally to the spectrum, as Fig. 5 shows. This 
flat frequency spectrum makes the plot of the drag force against time 
appear random. 

Other important features from Fig. 4 are worth rnentioning. First, the 
amplitude of the unsteady component of the drag force is only about l'�88 
of the mean value at long time observation (t>4~, given the in.itial 
configuration of the spheroids. Second, not knowing the precise initial 
configuration of the spheroids can result in about _+_ 1% uncertainty in the 

1.3 
1.2 
1.1 

1 
O . 9  
0 . 8 -  
0 . 7 -  
0 . 6 -  
0 . 5 -  
0 . 4 -  
0 , 3 -  
0 . 2 -  
0 , 1 '  

O I  
0 

Drag (Fine Mesh) 

" 1'o ' 2 o  ' 3 'o  ' 4'0 
Frequency 

Fig. 5. The power spectrum of the drag force where 0 =45'. Except for a prominant peak 
at n/2, the power spectrum of the drag force is essentially fiat. 
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drag force. That is, the long-time (t > 4) average values of the drag forces 
are only weakly dependent on the original orientation of the fibers. (The 
long-time mean value of g is )? = 6.26, with a variation of 0.05 about the 
mean value, or about 1%, for different initial orientation of the fibers.) 
From the long-time average value of X, and taking the wall effects into 
account, the effective viscosity of the suspension can be calculated to be 
1.058~/, which compares well with the shear viscosity value of 1.048r/. 

8 

7- 

6 '  

5 '  

4-  

3 

2 
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0 
-6 

1 .6  

-4  -2 0 2 4 6 

(a) 

7 

6 

5 

4 

3 

2 

1-  

0 
.-6 

1.2 t.4 \ '0 / 

(b) 

I:ig. 6. Con/ours of axial velocities at / =  I0, (a) Newtonian, (b) non-Newtonian; R = 10, 
q~ = 0.01~ initially, the spheroids are aligned perpendicular to the tube axis (0 = 90~ A few 
typical contour values arc given. 
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At low volume concentration, the drag force should be proportional to  

the volume fraction [cf. (2)]. Thus, the effective viscosity found by the 
falling sphere method will be given by 

r/err = r/(l + 5.8qb) 

for a dilute suspension of rigid spheroids of aspect ratie 10. 
The kinematics is similar to Newtonian kinematics, in contrast to the 

viscoelastic case, where a shift in the velocity contours was found ' ' ~ ,  this 
justifies our choice of the cylinder half-length of 6a. In Figs. 6a and 6b, con- 
tours of the axial velocities are displayed, and in Figs. 7a and 7b, contours 

8 
7 

6 
5 
,4 
3 

2 

1 

0 
-6 

0. , '~  - 0 . 3  

O. -0 .1  

0 . 0 1 ~ ~  - -  
'l 1 r i ' ,  ' i , 

-4 -2 0 2 

(a) 

-0.01 

~ 6 

Fig. 7. 

7 

6 

5 

4 

3 

2 

I 

0 
-.6 

0.3 -0,3 

0.2 -.02 

--4 -2 0 2 4 

(b) 

Contours of radial velocities at t= 10; (a) Newtonian, (b) non-Newtonian; the 
parameters are given in Fig. 6. A few typical contour values are given. 
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6 

Fig. 8. Contours of maximum shear stress at t = 10. The parameters are given in Fig. 6. A 
few typical contour values are given. Highest shear stress occurs in the polar region of the 
sphere, where the polar angle is 7r/2. 

of radial  velocities are  displayed.  These non -N e w ton i a n  contours  are 
similar  to the Newton ian  con tours  and are symmetr ic  abou t  the plane 
x = 0. This  symmet ry  is not  present  in the viscoelastic flow. ~6 i~1 

The contours  of the max imum shear  stress and  the first normal  stress 
difference are shown in Figs. 8 and 9, respectively. Mos t  of the shearing 
act ion is confined to the po la r  region of the sphere. 

The evolut ion  of the or ien ta t ion  of the micros t ruc ture  a long the tube 
is shown in Figs. 10a 10fat  different times. In these figures, p is represented 

Fig. 9. 
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Contours of the first normal stress difference N i at t = 10. The parameters are given 
in Fig. 6. A few typical contour values are given. 
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Fig. 10. 

8 

7 

6 

5 

4 

3 

2 

1 

0 
-6 

1 ! I . . . , ~  t ~ , .  - + -  ~-f 

I,, I,, ~, ,, , ~ , , ,  ~ , , ~ t ~ J . , , , , , , , . . , , ~ , ~  
r ~ i ,~ ' ', ' r V / ' V ! r '  ,' f i 

- - " i  i - - 7 - - -  - - T  1 i - ~  3 . . . .  F - r . . . .  ~ - - -  

-4 -2 0 2 4 6 

(a) 

, ,, ,, ,,, , / , ' / , ' . / / ~  ,,',' ',.,' ,'; I 
s I ' , t , / - I / ~ S , ' ~ . ~ ' ,  l ~  I I I I i s ~ I 

' , '  ' , " , " {  , ~ " , " , '  ' , '  , '~4 
-6 -4 -2 0 2 4 6 

(b) 

The orientat ion of the microstructure.  The parameters  are given in Fig. 6. (a) t = 0.l, 
(b) t=0 .5 ,  (c) t = 1.0, (d) t =  1.5, (e) t=2 .0 ,  (f) t =2.5.  
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Fi B. 11. The orientation of the spheroids at d e c  t = 5. The parameters are given in Fig. 6. 
(a) 0 = 0 ,  (b) 0 = 4 5  <', (r 0 =  90", where 0 is the initial angle that p makes with the tube axis. 
Note that the fibers behind the sphere align with the axis. 
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by an arrow. It is seen that the major disturbances in the microstructure 
occur in the layer between the sphere and the tube, extending to about one 
sphere diameter upstream and downstream of the sphere. These disturban- 
ces can be quite severe: p can flip its direction across a narrow layer of fluid 
(~0.1a).  This boundary layer occurs in the middle of the flow field and can 
cause difficulty in any analytical attempt at solving flows of suspensions. 

It is most interesting to find that at large time (of the order >4)  the 
spheroids tend to align themselves with the tube axis in the downstream 
wake region near to the tube axis regardless of their initial configurations 
(refer to Figs. I l a - l l c ) .  This tendency has been observed (unpublished 
data) with semiconcentrated systems. The falling ball, therefore, may be 
used as a device to partially align fibers. A physical explanation of this 
phenomenon is that the flow along the centerline in the downstream region 
of the sphere is extensional in nature; see, for example, ref. 14. Such a flow 
is capable of aligning the fibers well. 

We also have some numerical data for suspenskms of fibers with 
aspect ratio of 20. The drag force is plotted against time for the cases where 
0 = 0  ~', 45 ~', 90" in Fig. 12. It is clear that the flow is unsteady. The long- 
time average value of ~( and its standard deviation are 6.98 and 1%, respec- 
tively. This yields an effective viscosity of about 1.18 after applying the wall 
correction. This value compares well with the experimental value (,"~ 1.23) 
for a random suspension of fibers (aspect ratio 19.8)~ ~2~ as shown by 
Fig. 13. In this figure, the specific viscosity # r - 1 =  r / j r / r / -  1 is plotted 

-5  

There-,5 

I ' Theta--90 

-9 q I 

-10 I , , ~ 

Time 

Fig. 12. The drag force (normalized with respect to 6urlUa) on the sphere as a function of 
time for spheroids with aspect ratio R = 20. The volume fraction is q~ =0.01. The long-time 
average value for X is 6.98, and its standard deviation is I%. This is translated into an 
effective viscosity of 1.18r/. 
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Fig. 13. Specific viscosity versus volume fraction. The data are from Milliken et a l l  2~ The 
solid lines are the lines of best fit through the data and the vertical bar represents experimen- 
tal errors. At low volume fraction, the experimental data show that the specific viscosity is 
proportional to the volume fraction; the coefficient of proportionality is estimated to be 
28.5. fj~ The numerical results predict a coefficient of proportionality of 18. 

against the volume fraction. The solid lines represent the lines of best fit 
through the data. At low volume fraction, the specific viscosity is propor- 
tional to the volume fraction, and the coefficient of proportionality was 
found to be 28.5, r which is 37% greater than our numerical prediction 
of 18. 

At low volume fraction, the effective viscosity as measured by the 
falling ball method is predicted to be given by 

r/c~= q(l + 18(/,) 

for suspensions of fibers of aspect ratio 20. This is quite different from the 
effective shear viscosity of r/(l + 6.2r for fibers at the same aspect ratio; 
this difference has been observed in experiments ~j2~ and is due to the 
anisotropy of the fluid. 

4. F INAL R E M A R K S  

We presented the results of a numerical simulation of a steady flow 
generated by a sphere falling along the centerline of a cylindrical tube 
containing a suspension. The suspension is regarded as a continuum and is 
modeled by the Ericksen TIF constitutive equation. 

The numerical results show that the flow is intrinsically unsteady, and 
the drag force depends on the initial configuration of the mierostructure. 
However, the time variations in the drag force about its mean value and 
the lack of knowledge of the initial configuration of the microstructure con- 

822/62/5-6-20 
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tribute only about + ! %  uncertainty in the drag force on the sphere. For 
suspensions of spheroids of aspect ratio of 10, the falling sphere method is 
predicted to yield an effective (long-time average) viscosity of q(1 + 5.80), 
whereas for suspensions of spheroids of aspect ratio 20, an effective 
viscosity of r/(l + 18q~) is predicted. This latter prediction agrees reasonably 
well with the data on suspensions of blunt-ended cylinders and chopped 
nylon fibers of aspect ratio of about 19.8. ~2~ 

Furthermore, we find that the kinematics is Newtonian-like, although 
a detailed look at the evolution of the microstructure along the tube reveals 
that there may be thin boundary layers across which the orientation vector 
p flips its direction. The resolution of these boundary layers makes it 
difficult to analyze complex flows of suspensions. In the downstream 
region (i.e., behind the falling sphere) and at long time, the spheroids align 
themselves along the tube axis in agreement with some experimental 
observation. 

The finding may be extrapolated to concentrated suspensions if it can 
be shown that the T1F model is an adequate continuum description for 
these suspensions. So far, experimental data on concentrated suspensions in 
simple flows are scarce; apart from the preliminary studies by Acriw~s 
et al., ~22~ there are no serious efforts to try to come up with a workable con- 
stitutive equation for concentrated suspensions. The more complicated con- 
stitutive equation proposed by Acrivos et aL~ 122~ with suggested parameters, 
has also been implemented and tested in this flow. A steady-state flow is 
possible, and there is no oscillation in the plot of the drag force versus 
time. The steady-state drag force is about 10% below the Newtonian value 
(using the same viscosity) at a solid concentration 55%. Whether or not a 
steady-state flow is physically realizable can only be determined from 
experiments. However, it makes sense to study a more complex model only 
if a simpler one (i.e., the TIF model) has been shown to be inadequate. 

An alternative approach is to solve this problem as a many-body 
problem, for example, by the Stokesian dynamics simulation, t29) This latter 
technique is still in its preliminary stage, and no other numerical scheme 
for solving many-body problems is a viable alternative for present-day 
computers. The continuum approach will yield useful results in the 
foreseeable future. 
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